在可充電電池應用領(lǐng)域,金屬間化合物Mg2Ni(形成Mg2NiH4氫化物)可作為一種儲氫材料而受到越來越大的關(guān)注。理論上講,H元素質(zhì)量分數(shù)占到Mg2NiH4氫化物的3.6%,其電池放電能力應達到1000mAh/g,但實際上只有8mAh/g,這主要是Mg2Ni晶粒表層快速形成的氫化物層嚴重阻礙了氫原子擴散。而通過機械合金化的方法制備非晶態(tài)和納米晶粉末可以極大提高氫擴散能力,增強其氫化—去氫化反應動力。文章以Mg2Ni和稀土金屬Y為實驗材料,在不同機械合金化條件下,包括不同的研磨機類型、研磨周期、研磨溫度等,研究了合金化粉末的化學成分、微觀結(jié)構(gòu)和形態(tài)、熱穩(wěn)定性以及電特性等。結(jié)果顯示:采用SPEX 8000系列高能研磨機制備的合金化粉末具備納米晶相—非晶相相間的微觀結(jié)構(gòu),陽極極化曲線顯示出更高電流密度13-18mA/g,充放電測試曲線顯示出具備更高的zui大放電能力247mAh/g,所需研磨周期更短(第二個循環(huán)),且無需液氮冷凍輔助研磨;而Retsch PM 4000行星式研磨機制備的合金化粉末主要由非晶相組成,無納米晶生成,陽極極化曲線顯示其電流密度僅為3mA/g,需要更長的研磨周期(第五個循環(huán))獲得zui大的放電能力216mAh/g,且每個周期間隔需要對研磨罐進行液氮冷卻處理。